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Abstract 

For comparing two molecules, since the most general posi- 
tional relationship is the combination of a translation and 
a rotation, where the translational component can be 
removed by referring both molecules to their centres of 
gravity, a rotation taking one to the other must be found. 
Rather than using a 3 x3 rotation matrix, it is better to 
represent the rotation by a unit quaternion, since the 
equations to be solved to find, by least squares, the best 
quaternion, are linear. 

The comparison of two molecules, or parts of molecules or 
groups of atoms, has frequently been discussed, since the 
rotation matrix describing a rotation through an angle 0 
about an axis with direction cosines l, m, n, although it 
requires only three parameters, is excessively cumbrous. 
Given the two set of corresponding coordinates the deriva- 
tion of the best matrix is also tedious. The rotation matrix 
(for a pure rotation without dilatation) is 

FII(I - cos 0) ml(l - cos 0) nl(1 - cos 0) 7 
/ +COS0, + n s i n 0 ,  - m s i n 0  l 

[R]--I tm(l - c o s  0) mm(l-cos 0) nm(l-cos 0)[ 
/ - n  sin 0, +cos 0, +/sin 0 l 
l / n 0  - c o s  0) ran(l-cos 0) nn(i - c o s  0 ) [  
1_ + m  sin 0, - / s i n  0, + c o s 0  _] 

(1) 

Quaternions have long been employed for describing 
rotations. Bernal (1923), for example, used them for deriving 
the 230 space groups, but the method has remained some- 
what unfamiliar. There are advantages in quaternions for 
describing the rotations of many-jointed robot arms and 
they are thus suitable for dealing with related molecular 
systems like protein chains. 

The problem of finding the 3 x3 matrix [R] describing a 
pure rotation has been approached in a number of ways. 
For example: 

(a) by Dollase (1974), who used a concatenation of 
infinitesimal rotations; 

(b) by Kabsch (1978), who has implemented a rigorous 
procedure, at the cost of considerable complexity; 

(e) by Mackay (1977), who used the generalized inverse 
to obtain a general affine transformation [A] with nine fitted 
parameters which could be reduced, if necessary, to two 
rotations, S and R, and a dilation, L, by solving A = SLSTR. 

In order to compare two molecules geometrically, it is 
necessary to superimpose them as nearly as possible, so 
that the r.m.s, distance between corresponding atoms 
should be a minimum. It has been shown that reduction of 
the two coordinate systems to origins at the centres of 
gravity of the two molecules is the appropriate preliminary. 
The problem lies in then choosing the best rotation with 
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the appropriate values of 0 and l, m, n, the direction cosines 
(of which only two are independent). 

Rooney (1977) has compared the various systems of 
describing rotations and has conveniently collected the 
relevant formulae. 

A quaternion Q consists of four numbers, a scalar Ps and 
a vector p which can be resolved along the orthogonal unit 
vectors i, j and k. A unit quaternion with a unit norm 
(p2 +[p[2)= 1 relates two unit vectors r' and r, rotating r to 
r' by a rotation 0 about an axis with direction cosines I, m, 
n. Q is not uniquely defined by one pair of related vectors 
since the axis of rotation relating them could lie anywhere 
in the plane of symmetry, so that several pairs r' and r are 
necessary for finding Q. r' and r are related by r '=  Q-~rQ, 
where 

Q = cos 0/2 + l sin 0/2i + m sin 0/2j + n sin 0/2k 

and 

Q - i =  cos 0 / 2 - I  sin 0 / 2 i -  m sin 0 / 2 j - n  sin 0/2k. 

Q-IQ= 1 and Q = c o s  0 / 2 + s i n  0/2n, where n is the unit 
vector along the rotation axis. 

Two quaternions give a (non-commutative) product 
which is a quaternion. Hamilton's conditions, i 2 =j2 = k2= 
-1, ij = -ji ,  ij = k, etc., being applied to simplify the prod- 
uct. The quaternion product of two vectors R~ and R2 is 
R~Rz = - R ~ .  R2+R~ xR2, where the terms are the normal 
scalar and vector products. The product of two quaternions 
P and Q is 

PQ = (p~qs - p.  q) +(psq + qsq + p × q). 

The product of a quaternion with a vector is 

and 

so that 

Q r = ( - q . r ) + ( q ~ r + q × r )  

r P = ( - r . p ) + ( p ~ r + r x p )  

QrP = [ -  qs(p. r ) - p s ( q ,  r ) - q .  r xp]  

+ [qspsr + qs(r x p) - (r.  p)q 

+p~(q xr) +(q.  p)r- (q ,  r)p], 

i.e. [a scalar par t ]+[a  vector part], thus, if Q= 
cos O/2 +sin 0/2n and Q-i= cos O/2-sin 0/2n, 

r'= Q-IrQ = (cos 2 o /2 - s in  2 0/2)r 

- s i n  O(n xr)  +2 sin 2 0/2(n. r)n, 

the scalar part is zero. This expression is needed for calculat- 
ing r' from r for each atom when 0 and l, m, n have been 
found, although the rotation matrix [R] [from (1) above] 
could be used instead. 
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To find 0 and l, m, n we begin with Q r ' = r Q  (since 
Q-~Q = 1) so that 

q.  r' +q xr '  +qsr' = qs r+q ,  r - q  x r  

.-. q.  ( r ' - r )  + q , ( r ' - r )  +q x(r '  +r) = 0. 

Equating parts: q.  ( r ' -  r) -- 0, q~ --- cos 0/2 and Iql -- sin 0/2, 
so that 

( r -  r') = tan 0/2n x(r  +r'). 

Converting to orthonormal coordinates: 

(x - x ' ) i  + (y - y ' ) j  + (z - z')k 

I i j k 

= tan 0/2 l m n 

( x + x ' )  ( y + y ' )  ( z + z ' )  

So that, finally, we have three linear equations for each pa~r 
of related atoms and thus 3 N in all (if there are N pairs). 
Writing t for tan 0/2: 

mt(z + z') - n t (y  + y') = ( x ' -  x) 

- l t ( z  + z') + nt(x + x ' ) = ( y ' -  y) 

lt(y +y') - mt (x  +x')  = ( z ' -  z). 

These 3 N equations are then solved by the least-squares 
procedure A X  = H giving X =[A  rA]-~A rH  for the three 
unknowns, lt, mt and nt. tan 2 0/2 is obtained by squaring 
and adding these solutions. Division then gives l, m, n, the 
direction cosines. A value of 0 between 0 and 180 ° is 
obtained, the procedure failing if 0 = 180 °, when tan 0/2 is 
infinite. When this case is detected a special procedure must 
be implemented as Q = (l, 0, 0, 0), which is the same as the 
identity. Since the case of 180 ° rotation is frequent, this is 
the main disadvantage of the method. It may also be 
necessary to change the sign of 0 since the positive square 
root is returned. 

A straightforward program (in Basic) has been written 
to follow the procedure described. The two molecules are 
referred to their centres of gravity and the vectors to each 
atom from the centre of gravity are normalized to unity, 
the lengths being retained as weights for the least-squares 
procedure. Clearly, other weighting schemes could be 
applied also. The 3 N linear equations are then set up and 
solved by least squares, the inversion of the 3 x3 matrix 
being written explicitly. 0 and l, m, n having been obtained, 
the second molecule can be rotated to the orientation of 
the first for comparison, the differences in the positions of 
corresponding atoms being printed out. 

The program can be run on a microcomputer, such as a 
Sinclair Spectrum, and is useful for investigating quantita- 
tively the symmetry of configurations as well as for compar- 
ing molecules. The program is normally run interactively, 
changes being made in the program to suit particular cases 
rather than writing sections for all possible contingencies. 
Copies are available on request as it comprises only about 
150 lines.* 

Quaternion algebra is thus recommended as an effective 
method of handling the rotation of molecules. 

*A listing of the program has been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38938 (4 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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